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[1] Despite observations of tectonic tremor in many locations around the globe, the
emergent phase arrivals, low-amplitude waveforms, and variable event durations make
automatic detection a nontrivial task. In this study, we employ a new method to identify
tremor in large data sets using a semiautomated technique. The method first reduces the
data volume with an envelope cross-correlation technique, followed by a Self-Organizing
Map (SOM) algorithm to identify and classify event types. The method detects tremor in
an automated fashion after calibrating for a specific data set, hence we refer to it as being
“semiautomated”. We apply the semiautomated detection algorithm to a newly acquired
data set of waveforms from a temporary deployment of 13 seismometers near Cholame,
California, from May 2010 to July 2011. We manually identify tremor events in a 3 week
long test data set and compare to the SOM output and find a detection accuracy of 79.5%.
Detection accuracy improves with increasing signal-to-noise ratios and number of
available stations. We find detection completeness of 96% for tremor events with
signal-to-noise ratios above 3 and optimal results when data from at least 10 stations are
available. We compare the SOM algorithm to the envelope correlation method of Wech
and Creager and find the SOM performs significantly better, at least for the data set
examined here. Using the SOM algorithm, we detect 2606 tremor events with a
cumulative signal duration of nearly 55 h during the 13 month deployment. Overall, the
SOM algorithm is shown to be a flexible new method that utilizes characteristics of the
waveforms to identify tremor from noise or other seismic signals.
Citation: Horstmann, T., R. M. Harrington, and E. S. Cochran (2013), Semiautomated tremor detection using a combined
cross-correlation and neural network approach, J. Geophys. Res. Solid Earth, 118, doi:10.1002/jgrb.50345.

1. Introduction
[2] Since Obara [2002] first observed tremor along the

southwest Japan subduction zone, tectonic tremor has been
detected in many other subduction zones, such as Casca-
dia [Rogers and Dragert, 2003; McCausland et al., 2005],
Costa Rica [Brown et al., 2009; Walter et al., 2011], Alaska
[Peterson and Christensen, 2009], and Mexico [Payero et
al., 2008]. Many studies have also shown that tectonic
tremor occurs outside of subduction zones; for example,
Nadeau and Dolenc [2005] detected tectonic tremor along
the San Andreas fault, a transform plate boundary, and Peng
and Chao [2008] observed tectonic tremor in Central Range
in Taiwan, an arc-continental type collision environment.
Tectonic tremor that occurs spontaneously is denoted as
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“ambient” tremor, in contrast to “triggered” tremor, which
is excited by surface waves of large distant earthquakes or
other static or dynamic stress changes [Ghosh et al., 2009;
Gomberg et al., 2008; Peng et al., 2008; Peng et al., 2009;
Wang et al., 2013]. The distinctive waveform characteristics
of tectonic tremor include emergent phase arrivals and a low-
amplitude signal, with the main portion of the energy often
concentrated in the 2–8 Hz band [Obara, 2002; Schwartz
and Rokosky, 2007; Beroza and Ide, 2011]. The tremor sig-
nal duration ranges from short bursts of a few seconds up to
several tens of minutes or hours [Ryberg et al., 2010]. In the
following, we refer to tectonic tremor simply as tremor.

[3] While some progress has been made on understanding
the mechanics of tremor, detection of tremor is not triv-
ial; the emergent phase arrivals and low amplitudes make
automated detection a difficult task. In attempts to over-
come difficulties associated with detection, a variety of
detection methods have been developed, many of which are
based on one of two techniques: (1) a cross correlation of
envelope waveforms [Obara, 2002] or (2) searching for low-
frequency earthquakes (LFEs) [Katsumata and Kamaya,
2003]. Additional techniques which do not rely on cross
correlation of envelopes of templates include those used by
Brudzinski and Allen [2007], Ghosh et al. [2009], and Walter
et al. [2011].
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Figure 1. Station distribution used in our analysis, including the temporary array, the permanent HRSN
stations, and station PKD. Three sites contain a mini-array of three stations each, spaced approximately
150 m apart.

[4] Two of the most common methods include a method
by Wech and Creager [2008] analyzing network coher-
ence with envelope cross correlation and a method by
Shelly et al. [2007] which uses a template-matching, cross-
correlation technique to identify LFEs. Wech and Creager
[2008] introduced a method analyzing network coherence
through epicentral reliability and spatial repeatability. They
first calculate envelope functions for 5 min time windows
that are low-pass filtered between 1 and 8 Hz. Next, they
use a grid search over all possible source locations based on
S wave lag times calculated from the correlation values of
the envelope functions. Source locations with estimated epi-
central error estimates exceeding 5 km are rejected. Tremor
activity is then detected when at least two locations occur
within a 0.1�0.1ı area per day. The advantage of the method
is its ability to detect and locate tremor at the same time
and that it provides robust results even when an individ-
ual station has a poor signal-to-noise ratio. A limitation of
the method is that it is restricted to detection of extended
tremor episodes.

[5] Shelly et al. [2007] introduced a different detec-
tion method using LFEs in combination with a template-
matching, cross-correlation technique. The set of LFEs from
a number of different event families function as master tem-
plates in the detection algorithm which then identifies tremor
events in continuous waveform data. The advantages of the
method are that it is very precise in event time determi-
nation and it can be applied using individual stations. The
shortcoming of the method is the required a priori knowl-
edge of the master event templates which restricts detection
to LFEs which correlate highly with the defined templates.
Brown et al. [2008] modified the LFE template technique to
overcome the disadvantage of requiring a priori knowledge
of the master templates by eliminating the requirement that

master templates be predefined. They remove the need for
using predefined master templates by applying a running
autocorrelation technique to identify the event families and
average the repeating events to create master templates.
However, the method is computationally expensive and thus
difficult to apply to large data sets.

[6] Here we introduce a new method using a neural net-
work algorithm based on frequency content and motion
products of tremor waveforms. The fundamental advance
of the method is that it does not rely on master templates
and is not based on any assumptions about a minimum
signal length.

[7] Many tremor detection methods employ a mini-
mum time window length, limiting event detection to
those tremor episodes with duration exceeding the min-
imum window length [e.g., Wech and Creager, 2008].
Removing such restrictions on duration permits the detec-
tion of a wider range of event types than present
methods, thereby increasing the potential for discovering
tremor at different depths within the fault zone. Detecting
tremor at shallow depths, particularly in subduction zones,
could have potential implications for seismic and tsunami
hazard; therefore, methods capable of detecting a wider
variety of events have the potential to advance our under-
standing the role of tremor in fault slip. By detecting
a larger variety of events, we increase the observations
available for analysis and interpretation and advance our
understanding of tremor sources. Here we describe a new
method for tremor detection, while the detailed analy-
sis of the tremor will be the subject of forthcoming
work. The method detects tremor in an automated fash-
ion, however, calibration of the method is required for
use with a specific data set, so we refer to the method
as “semiautomated.”
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Table 1. Complete List of Stations, Their Positions, and Data Availability

Station Latitude (ıN) Longitude (ıW) Elevation Start Date End Date

KIT A1 35.665945 –120.293227 510 m 24 May 2010 02 May 2011
KIT A2 35.795039 –120.360526 375 m 24 May 2010 31 Jun 2011
KIT A3 35.664648 –120.137173 387 m 24 May 2010 31 Jun 2011
KIT10 35.688881 –120.247177 599 m 24 May 2010 05 Jan 2011
KIT11 35.716370 –120.222643 619 m 24 May 2010 11 May 2011
KIT12 35.782349 –120.218689 581 m 25 May 2010 31 Jun 2011
KIT13 35.711880 –120.393730 448 m 24 May 2010 31 Jun 2011
GHIB 35.832249 –120.347282 330 m 24 May 2010 31 Jun 2011
EADB 35.895222 –120.422623 224 m 24 May 2010 31 Jun 2011
FROB 35.910950 –120.486877 231 m 24 May 2010 31 Jun 2011
MMNB 35.956501 –120.496002 480 m 29 May 2010 31 Jun 2011
JCSB 35.921169 –120.433998 299 m 24 May 2010 31 Jun 2011
VCAB 35.921619 –120.533920 555 m 24 May 2010 31 Jun 2011
VARB 35.926079 –120.447052 177 m 29 May 2010 31 Jun 2011
PKD 35.945171 –120.541603 583 m 24 May 2010 31 Jun 2011

[8] The paper is structured as follows: We first present
the data set and methods description in sections 2 and 3,
followed by a method performance evaluation in section 4
using a 3 week test data set. Finally, we apply the method
to over 1 year of continuously recorded waveform data to
identify all tremor events within that time span.

2. Data Set
[9] The data set consists of continuous broadband record-

ings of 13 STS-2 seismometers from the Karlsruhe Broad-
band Array (KABBA) at a sampling rate of 200 sps. The
surface stations were deployed along the Cholame segment
of the San Andreas fault at seven sites within a 20 km by
25 km area centered on the town of Cholame (Figure 1).
The highest amplitude tremor identified in previous stud-
ies occurs directly beneath Cholame [Nadeau and Guilhem,
2009; Shelly and Hardebeck, 2010; Ryberg et al., 2010]. In
contrast to the area around Parkfield, the area near Cholame
lacks dense station coverage. The array was designed to
supplement the seismic network south of the High Resolu-
tion Seismic Network (HRSN) to better record the vigorous
tremor occurring here. The station installation at three of
the seven sites consist of mini-arrays of three stations each
spaced approximately 150 m apart. The stations recorded
continuously from May 2010 to July 2011. In addition to
the array broadband surface stations, we use seven bore-
hole stations from the HRSN and one additional broadband
surface station from the Berkeley Digital Seismic Network
(BDSN). The HRSN stations GHIB, EADB, FROB, VCAB,
VARB, MMNB, and JCSB are located north of the array
near Parkfield and record at a sampling rate of 250 sps. Sta-
tion PKD of the BDSN network is also located north of
the array and records continuous data at a sampling rate of
100 sps. Additional data exist from the Northern California
Seismic Network surface stations, however, we do not use
them, as selected stations provide us with the widest range of
azimuthal coverage using the least number of stations pos-
sible in order to optimize the computational efficiency. A
complete list of stations is provided in Table 1.

3. Methods
[10] In this section, we outline the individual steps of the

semiautomated detection method. We first detail the data

reduction step which reduces the volume of continuously
recorded data (section 3.1). Second, we describe the data
classification steps required to prepare the data input for
the neural network, or Self-Organized Map (SOM) clus-
tering algorithm (section 3.2). Next, we present the SOM
clustering, including the determination of the signal classes
(section 3.3). Finally, we describe the postprocessing steps
that reduce the number of earthquakes and false picks in the
signal classes, which may occur if the adjustable sensitivity
of the algorithm is set too high (section 3.4).

3.1. Data Reduction
[11] Our data set contains roughly 14 months of continu-

ous recordings on a maximum of 21 stations, including both
the temporary array and permanent stations. The goal of the
data reduction step is to keep time periods with potential
seismic events while reducing the data volume as much as
possible. In the following, the term “seismic event” refers
to both tremor and earthquakes, which are assumed to be of
unknown type until they are classified by the method. The
data reduction step uses a cross-correlation technique sim-
ilar to that applied by previous studies; however, here the
cross correlation is not designed to detect or classify seismic
events exclusively. Instead, portions of a continuous time
series are classified using the SOM clustering.

[12] We start by searching for time windows contain-
ing coherent signals across the station array. We first filter
the waveforms between 2 and 8 Hz, as the signal to noise
ratio for tectonic tremor for our data set is highest in the
2–8 Hz band [Obara, 2002; Schwartz and Rokosky, 2007;
Beroza and Ide, 2011]. Second, the envelope of each trace
is calculated and decimated to 0.2 sps, following which, the
envelopes of individual components are stacked for each
station. Third, we perform a cross correlation of waveform
envelopes between each station and a designated master sta-
tion. The cross-correlation step is repeated using each station
once as a master station. We do not remove the instrument
response, as it is flat within the frequency band of inter-
est and removing it would increase the computational time.
Moreover, all cross correlations are normalized and based on
smoothed envelopes, which removes the influence of differ-
ent amplitudes and reducing the effect of phase shifts. We
tested different time window lengths and the time step to
determine the most effective time window length. A trial-
and-error comparison of handpicked time windows and time

3



HORSTMANN ET AL.: SEMIAUTOMATED TREMOR DETECTION

windows picked by the automated method indicates that a
520 s window and 5 s time step optimally removes noise
while retaining the highest number of the seismic events.
The interstation distance divided by a speed of 3 km/s is the
maximum permitted time lag between peak correlation val-
ues, reducing the influence of infrasound events and noise
while still detecting S waves from shallow sources close to
the stations. After averaging the cross-correlation values for
each time window and each master station over all station
pairs, we then select the maximum mean cross-correlation
value, producing a mean coefficient function over time. We
retain event windows for which the coefficient function
exceeds the mean correlation value by a threshold of 0.15 for
at least 30 s. The threshold was determined by testing val-
ues on a 1 week test data set from 24 May to 14 June 2010.
We determine by visual inspection which values retain the
majority of events, while best reducing the data volume.

[13] We merge windows separated by less than 300 s into
a single event window. Doing so may preserve extended
tremor episodes which may have been otherwise fragmented
into separate time windows. Visual examination of the
tremor episodes recorded in our data set suggests that tremor
episodes do not typically last longer than approximately
100 s; hence, we use a generous value of 300 s to bridge
time windows. One could use a longer interwindow time,
however, doing so increases the cost of computational time
during the SOM processing.

3.2. Data Preparation
[14] The data preparation steps outlined here prepare the

data for input into the Self-Organized Map (SOM) algorithm
[Kohonen, 2001], which is available as a Matlab toolbox
[Vesanto, 2000]. The data preparation is not essential to the
clustering algorithm but is included to enhance the detection
algorithm’s performance, including adjusting the sensitiv-
ity of the algorithm. The goal of the SOM is to group time
series data with distinguishing features. The SOM algorithm
may use any similar feature, such as frequency content in a
particular band or polarity, to classify the data. The larger
the feature differences between various types of signals, the
more effectively they distinguish those signals. Below, we
describe the preconditioning steps and the feature selection
and calculation. The main data preconditioning steps entail
reducing the effects of noise and calculating and normaliz-
ing the feature values used by the SOM algorithm. We first
describe the noise reduction in section 3.2.1, followed by
trace alignment in section 3.2.2. We then explain the fea-
ture calculation in section 3.2.3 and, finally, we describe the
feature vector normalization in section 3.2.4.
3.2.1. Noise Reduction

[15] To remove the influence of noise and to enhance sig-
nal amplitudes for the feature calculation, we implement
a noise reduction technique introduced by Martin [2001],
which is based on minimum statistics and employs spec-
tral subtraction methods. The noise reduction step improves
the detection result, thereby increasing the sensitivity of the
detection algorithm. The technique assumes that the power
spectral density of a given signal quickly decays to the
background noise level over time. It tracks the minimum
spectral amplitude value in narrow frequency bands, using
the tracked values as an estimated minimum noise level. A
mean noise level estimation is then calculated by multiply-

ing the minimum noise estimation with a bias compensat-
ing factor, which is based on the variance of the spectral
amplitude in that given frequency band [Martin, 1994].
Assuming that noise and signal are statistically independent
and additive, one may remove noise by subtracting the mean
noise estimation from the original spectra. The phase spectra
are not modified, thereby permitting a transformation back
to the time domain, with the noise removed.

[16] The algorithm applies a short time Fourier transform
with a moving time window length of 0.6 s and 0.3 s over-
lap in which the power spectra are recursively smoothed.
For example, let Mk,l denote the power spectrum for a given
frequency bin l within some time window k. The smoothed
power spectrum is given by Pk,l = ˛ � Pk–1,l + (1 – ˛) � Mk,l,
where ˛ represents an updating factor that controls the influ-
ence of previous time windows. The updating factor ˛ is
typically set between 0.9 and 0.95 [Martin, 1994]. Here we
use a value of 0.9.

[17] A requirement of the noise reduction method is
that the time window used to track the minimum noise
level must be longer than the expected observed signal
[Martin, 1994]. Tremor episodes consist of successive
energy bursts which may last up to several minutes. The
time window for the noise reduction must be larger than the
longest observed tremor signal in order to bridge to the next
minimum containing only noise. However, the shorter the
time window, the more accurate the estimation of the noise
level. We reviewed longer tremor episodes in our test data
set and tested various window lengths and found a maximum
of 420 s an optimum duration. The disadvantage of using
such a long time window becomes apparent when consider-
ing cases where the noise level is monotonically increasing.
For example, the noise level is calculated for a given sample
from the time window spanning 420 s prior to the sample.
If the noise level constantly increases, the current estimation
of the minimum noise level in a given window occurs at the
beginning of the window. However, the noise estimation is
subtracted from the sample at the end of the time window.
Thus, the noise level is underestimated. Consequently, the
noise level estimation will be underestimated at a time lag
approximately equal to the time window length. However,
even in the extreme case of monotonically increasing noise,
the noise reduction will reduce the noise amplitude leading
to a better signal-to-noise ratio and therefore an enhanced
tremor signal.

[18] Figure 2 illustrates the functionality of the technique.
Figure 2b shows the original time series recorded at sta-
tion KIT10 with a 2–8 Hz band-pass filter applied exhibiting
multiple tremor bursts. The same tremor bursts highlighted
in Figure 2b are enhanced in Figure 2c after applying the
noise reduction. The enhanced signal will be more easily rec-
ognized by the SOM algorithm. Note that the PSD shown in
Figure 2 reflects a narrow frequency band centered at 7 Hz.
Therefore, some tremor bursts which are not obvious in the
PSD can be seen in the waveforms in Figures 2b and 2c.
3.2.2. Trace Alignment

[19] The goal of the SOM algorithm is to cluster specific
data features independent of the signal duration. Specifically,
we want to be able to detect short tremor bursts, as well
as longer episodes. Therefore, in order to cluster features
of the same signal recorded at individual stations, all traces
must be corrected for moveout. We calculate an individual
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Figure 2. (a) Power spectral density (PSD) for one narrow
frequency bandpass centered around 7 Hz of the wave-
form data shown in Figure 2b (dashed line). Smoothed PSD
(purple), tracked minimum value (green), and a bias factor
computed mean noise estimation (red). (b) Z component of
station KIT 10 filtered between 2 and 8 Hz during a tremor
episode including individual tremor bursts (yellow stars). (c)
Noise-reduced trace after subtracting the mean noise esti-
mation. The trace in Figure 2c has lower noise amplitudes
than the trace in Figure 2b, enabling the SOM algorithm to
perform better.

moveout correction for each of the time windows retained
by the data reduction step discussed in section 3.1. We
then align traces according to the moveout before inputting
them into the SOM. We determine the moveout between
station pairs by cross-correlating envelopes that have been
smoothed over 15 samples with a master station.

[20] In order to allow greater flexibility and account for
the current noise conditions at the individual stations, any of
the stations may serve as the master station. We determine
the moveout used to align the traces from the offset asso-
ciated with the maximum of the cross-correlation function.
Preliminary inspection of the data showed a number of infra-
sound events (see example in Appendix C and Figure C2, as
well as a discussion of the feature calculation of infrasound
events). Setting a maximum permissible time difference
allows us to remove infrasound events with much lower
propagation velocities, while retaining most other seismic
events. For each time window, we choose the master sta-
tion for which the envelope correlation coefficients are on
average higher than the other stations.
3.2.3. Feature Calculation

[21] Once we prepare the data for input into the SOM by
reducing the effects of noise and aligning the traces, we cal-
culate the features on which the event detection is based.
Any characteristic of a time series which varies with signal
source is well suited for use in SOM clustering. Such charac-
teristics may include polarity, frequency-wave number, and
complex seismic trace properties. We term such particular
characteristics as “features” after Köhler et al. [2010] and
calculate multiple feature values continuously throughout
the time series. We combine all feature values into a fea-

ture vector for each window where the feature values are
calculated. For an extended discussion on features, including
various types and their interdependence, we refer the reader
to Köhler et al. [2010].

[22] Determining what features work best for a given data
set requires testing the features for uniqueness using a sam-
ple data set. We perform a preliminary test of the SOM
algorithm on a 3 week long sample data set that contains
both tremor and earthquakes. The sample data set was taken
from the beginning of our measurement period, spanning the
period from 24 May to 14 June 2010. We use waveforms
from our temporary deployment, as well as from permanent
stations installed locally near the Parkfield segment of the
San Andreas fault (Table 1). The sample data set contains
noise, tremor events, and local and regional earthquakes and
is therefore suited for testing the method. In the subsequent
text, we refer to the 3 week long test data set discussed here
as simply the test data set. Example tremor events are shown
in Figures 7 and 8, and an example earthquake recording is
shown in Appendix C in Figure C1. Systematic tests using
various features of tremor episodes indicate that two fea-
tures are capable and sufficient to distinguish tremor signals
from regional earthquakes and noise: (1) spectral amplitudes
in five narrow frequency bands calculated via a Stockwell
transform [Stockwell et al., 1996] and (2) combined hori-
zontal to vertical component motion products [Jepsen and
Kennett, 1990].

[23] The five frequency bands used for the first feature
include the main energy band of tremor, namely, the 2–8 Hz
band, as well as the 15–30 Hz and 0.5–1.5 Hz bands. The
2–8 Hz band is subdivided into three equally sized bands.
The 15–30 Hz band is useful for distinguishing tremor from
noise, and the 0.5–1.5 Hz band is useful for discriminating
tremor from regional and teleseismic earthquakes. The high-
resolution spectral amplitudes are calculated using a Stock-
well transform and then averaged over the given frequency
bins [Stockwell et al., 1996]. The Stockwell transform pro-
duces the time-frequency distribution of a signal using a
moving Gaussian window that is scalable for different fre-
quencies. Compared to a short time Fourier transform, the
Stockwell transform retains better time resolution, similar to
wavelet transformations.

[24] The second feature we calculate consists of com-
bined motion products. Combined motion product values
differ widely for different seismic phases; thus, they are ideal
for use within the SOM algorithm. White [1964] defined
two motion product detectors, HV and HiV having a 90ı
phase shift:

PN = uN � uD PE = uE � uD (HV) (1)

QN = H(uN) � uD QE = H(uE) � uD (HiV) (2)

where uN, uE, and uD are the displacements in the north, east,
and vertical directions. H(uN) denotes the Hilbert transform
of uN. Jepsen and Kennett [1990] used both HV and HiV
detectors to define combined motion products:

PNE =
q

P2
N + P2

E and QNE =
q

Q2
N + Q2

E. (3)

They define a wave classification parameter PQabs using the
combined motion products, where PQabs = PNE � abs(QNE).

5



HORSTMANN ET AL.: SEMIAUTOMATED TREMOR DETECTION

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Xscaled values

X
no

rm
al

iz
ed

F
mean

=1, F
std

=1

F
mean

 > 1, F
std

=1

F
mean

>1, F
std

=0.5

Figure 3. Graphic description of extended softmax nor-
malization. Transformation from Xscale to Xnorm: (a) original
softmax normalization (solid line); (b) Fmean �mean(Xorg) =
1 and Fstd = 1 (dashed line); (c) Fmean � mean(Xorg) = 1 and
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For a rectilinear polarized wavefield, PQabs is used to dis-
criminate between vertically and horizontally polarized S
waves, with expected PQabs values of > 0.25 and < 0.25,
respectively. Waves with two-dimensional motion, such as
Love or Rayleigh waves, are expected to have PQabs val-
ues greater than 0.25. The PQabs parameter exhibits large
increases during earthquake and tremor episodes, while
maintaining low values for noise. PQabs is therefore a useful
parameter for distinguishing seismic events from noise. We
also use it to distinguish the clusters identified by the SOM
algorithm containing seismic signals, which we discuss in
detail in section 3.3.1.

[25] As discussed above, we use five frequency bands for
the spectral density calculation and one combined motion
product, for a total of six values per time interval, per station.
We first decimate the time series to 50 sps after applying a
low-pass filter with a 20 Hz corner frequency to avoid alias-
ing effects. We then calculate the six feature values at the
sample rate of the decimated time series, with the exception
of the upper frequency. The upper frequency band feature is
calculated from the time series decimated to 100 sps, which
then has a low-pass filter applied with a corner at 40 Hz. The
decimated and filtered time series of the upper frequency
band is also resampled to 50 sps. We then create feature vec-
tors for an individual station by taking the average value of
each feature over 0.5 s time intervals, in order to optimize
the balance between computational cost and accuracy. The
feature vectors from each individual station are combined
into a single feature vector for the entire array. For example,
a feature vector would consist of 60 feature values per time
interval for a 10 station array.
3.2.4. Feature Vector Normalization

[26] The input for the SOM algorithm is the feature vec-
tors. The SOM clustering algorithm is based on Euclidean
distances of the feature values comprising the feature vec-
tors in a high-dimensional parameter space [Vesanto and
Alhoniemi, 2000]. In order to weight all features equally, it is
critical to normalize all feature values to the same range, i.e.,

between 0 and 1. We use an extended softmax normalization
to normalize feature values.

[27] The softmax normalization is defined as

Xnorm =
1

1 – e–Xscaled
, with Xscaled =

Xorg – mean(Xorg)
std(Xorg)

,

(4)
where Xorg are the original feature values [Pyle, 1999, pp.
271–274, 355–359]. The main benefits of the softmax nor-
malization over a standard normalization are the ability to
reduce the influence of extreme values without neglecting
them and regulate the detection sensitivity of the method. By
inserting two scaling factors within the softmax normaliza-
tion, we can define the extended softmax normalization as
follows:

Xnorm =
1

1 – e–Xscaled
with Xscaled =

Xorg – Fmean �mean(Xorg)
Fstd � std(Xorg)

,

(5)
where Fmean and Fstd are the scaling factors that determine
the range of the scaled feature values. Adjusting the Fmean
and Fstd parameters are what allows one to adjust the sensi-
tivity of the detection algorithm for a given a data set. The
scaling factors Fmean and Fstd influence the transformation
behavior of the data set to a normalized data space and can
be used to carve out small but important differences which
would be lost using the standard softmax normalization. At
the same time, bigger yet less important differences in the
data values can be downweighted.

[28] Our data set contains over 1 year of data, making
calculating the mean and standard deviation of Xorg for all
feature vectors for the entire time period computationally
expensive. Nevertheless, applying the same normalization to
the entire data set is critical in order to cluster events that
may occur widely spaced in time during the study period.
As one does not know the range of feature values a priori,
the Fmean and Fstd scaling factors must be determined empir-
ically using a sample data set. We therefore calibrate our
algorithm using the same 3 week representative test data set
used for the feature selection in section 3.2.3. We calculate
the mean (mean(Xorg)) and standard deviation (std(Xorg)) of
the feature values for the 3 week time period and use those
values to normalize the entire data set. We manually pick
tremor events during the 3 week period and determine the
best Fmean value based on a comparison of manually picked
events and those picked by the SOM. We start by normaliz-
ing our data set with a range of Fmean and Fstd values and run
the SOM for each of the F-value pairs. We evaluate which of
the F-value pairs correspond to the highest number of accu-
rately picked events compared to the handpicked events. The
F-values deemed best from the comparison are then used for
the entire data set, assuming similar characteristics amongst
earthquakes and tremor over the entire time period.

[29] Figure 3 illustrates the normalization. If the factors
Fmean and Fstd are set to 1 for the regular softmax normal-
ization (black line), the normalization scales nearly linearly
for values close to the mean value and tapers off asymptot-
ically to 0 and 1 for values far from the mean. The portion
of the curve that scales linearly is controlled by the standard
deviation scaling factor, Fstd. When Fstd ¤ 1, as in the case
of the extended softmax transformation, then the curvature
of the nonlinear region scales asymptotically to both 0 and
1. The factor Fmean is used to shift the linearly scaled region
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Table 2. Fmean and Fstd Values Determined by a Comparison of
Manually and SOM Detected Events for the Test Data Seta

Feature Fmean Fstd

2–4 Hz frequency band 0.5 0.5
4–6 Hz frequency band 0.5 0.5
6–8 Hz frequency band 0.5 0.5
15–30 Hz frequency band 8.0 1.5
0.5–1.5 Hz frequency band 2.5 1
PQabs 1.8 0.6

aThe values shown are the normalization values used for the remaining
data set in the extended softmax normalization (equation (5)).

of the normalized data to the position in the feature data
set where it best discriminates between noise and seismic
signals. Increasing the Fmean value has the effect of offset-
ting the scaled data to a value above 0; in the case of the
red and green curves shown in Figure 3, the inflection point
of the curves is shifted to a value of 1. The most important
benefit of using the extended softmax normalization is the
capability to regulate the sensitivity of the detection method
via the scaling factors Fmean and Fstd. Higher or lower values
for Fmean and Fstd translate to higher or lower detection sensi-
tivity. One must keep in mind, however, that with increased
sensitivity comes an increased number of false detections.
Given their importance, Appendix A contains an extended
discussion on the determination of F-values. Table 2 indi-
cates the optimal values for our data set to achieve the
desired level of sensitivity.

3.3. SOM Clustering Algorithm
[30] Following feature normalization, the feature vec-

tors are ready for input into the SOM clustering program
[Vesanto, 2000]. The SOM is an unsupervised learning
method that clusters data into groups with similar feature
values. Following feature input, the algorithm first deter-
mines the number of so-called prototype vectors in an
N-dimensional parameter space, where N is the number of
feature values for each time window (e.g., the number of
components comprising the feature vectors for an individ-
ual station). The prototype vectors form a two-dimensional
grid with a hexagonal structure, where each prototype vector
has the same dimension as each of the feature vectors and
is connected to the six nearest neighbor vectors. After the
grid is randomly initialized in the parameter space, the algo-
rithm updates the prototype vectors and moves them toward
the feature vectors during an iterative training period. At
the end of the training period, the grid is spread to the data
cloud. The data cloud is composed of the feature vectors,
and it approximates the probability density function of the
input data. This process is also known as vector quantization
[Köhler et al., 2010]. Once the grid position in the param-
eter space has been calculated, each data point is linked to
the nearest prototype vector. We illustrate an example of a
data set with three features in Figure 4. Following the grid
formation, a hierarchical clustering algorithm clusters the
SOM prototype vectors [Vesanto and Alhoniemi, 2000]. The
algorithm iteratively determines appropriate clusters based
on the average distances between prototype vectors within
existing clusters; however, the user may set an acceptable
minimum and maximum number of clusters. The optimal

number of clusters is then chosen by evaluating the Davies-
Bouldin index (DB index) [Davies and Bouldin, 1979]. The
DB index is a metric for evaluating the appropriate number
of clusters based on the distance between cluster members
and between cluster centers. It has a minimum value when
the clusters are most compact and widely spaced. All of the
above mentioned aspects of the clustering algorithm, includ-
ing the DB index, are contained within the SOM toolbox as
described by Köhler et al. [2009, 2010]. Due to the compu-
tational limitation of the working memory, we split the data
set into day-long sections, permitting the SOM to determine
the optimum number of clusters for each 24 h period of data.

[31] Theoretically, the DB index may indicate any num-
ber of clusters for each day’s worth of data. In practice,
we restrict the range for which the DB index is evaluated
in order to avoid using an inappropriate number of groups.
Based on the number of different signals we expect to be
present in the continuous data (noise, tremor, earthquakes,
infrasound), we empirically determine the appropriate range
of numbers of clusters necessary. We thereby attempt to
prevent the algorithm from mixing different signals in one
cluster that we want to distinguish. We use the test data set
to evaluate the appropriate maximum and minimum number
of clusters. Figure 5 illustrates the influence of the number
of clusters on the detection accuracy, as well as the number
of accurate detections found by the SOM in the 3 week data
set. The detection accuracy varies only marginally (˙2%)
when the minimum allowable number of clusters is greater
than four, and the maximum allowable number of clusters
is greater than eight, suggesting that the number of clus-
ters has little influence on the detection accuracy (Figure 5).
The method detects the largest number of events when the
minimum number of clusters is eight or nine. The detection
accuracy increases by approximately 1% if the minimum
number is set to 7 or 10. However, the number of detected
signals decreases significantly when the minimum number
of clusters is less than eight. One might argue based on
Figure 5 that the best minimum value ranges from 19 to 20.
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Figure 4. SOM after training: the SOM can be seen as
a regular two-dimensional grid of prototype vectors (black
stars connected by a mesh) initialized in a 3-D data space in
this example. Red, blue, and green points represents the data
set. Each component of an individual data vector (shown
here as X, Y, and Z) represents a feature. The color code of
the data points indicates the clustering result.
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However, analyses of various normalization factor values
show a general trend of decreased detection accuracy when
using such a high minimum number of clusters. We there-
fore use eight as the minimum number of clusters because
the SOM detects the largest number of events with a mini-
mum loss in detection and accuracy for the remaining data
set. A similar argument holds for the maximum number of
clusters. We choose a maximum value of 20 to allow greater
flexibility in the number of clusters. Therefore, the DB index
falls within the range of 8 and 20 clusters.
3.3.1. Signal Class Determination

[32] The SOM groups the data points into clusters, but
these clusters do not have an a priori association with
any particular signal type (e.g., tremor, earthquake, noise).
Therefore, the user is free to determine the signal cluster of
interest. Here the algorithm identifies the content of the clus-
ters, and we manually classify the groups of clusters into
“classes.” We designate three main classes into which the
various clusters determined by the SOM are sorted. Two
of the classes contain seismic signals, and the third class
contains noise. We label these classes as S1, S2, and N
(seismic signal classes 1 and 2, and noise). Clusters con-
taining seismic signals are identified by isolating classes
with high PQabs values. The PQabs feature is able to dis-
criminate between noise and seismic signals for all features
values, making it a robust tool for identifying seismic events.
Examination of the test data set indicates that normalized
PQabs � 0.5 for seismic signals and PQabs < 0.5 for noise
signals. We therefore designate a cluster as belonging to one
of the two seismic classes if the following two criteria are
met: (1) mean PQabs � 0.5 at a minimum of three stations
and (2) average PQabs � 0.5 on all borehole stations. We
impose the additional requirement for borehole stations in
order to avoid classifying infrasound events as tremor.

[33] We use the frequency features to further group the
seismic signals into two classes (S1 and S2). Class S1
contains tremor and small local earthquakes, and class
S2 contains regional and larger local earthquakes. Similar

to tremor signals, earthquake signals also have values of
PQabs > 0.5. Although the PQabs feature is similar between
the two types of signals, the spectral characteristics of
teleseismic and regional earthquakes differ from tremor in
the low-frequency band (0.5–1.5 Hz). We identify clusters
containing regional and larger local earthquakes using the
mean spectral amplitude values in the lower frequency band;
events with (normalized) mean spectral amplitude exceed-
ing 0.6 at a minimum of three stations comprise the class
S2. The remaining clusters of seismic events comprise class
S1 (tremor and local earthquake) class. Unfortunately, the
spectral characteristics of small local earthquakes are sim-
ilar to those of tremor, and there is no definitive cutoff
value which can discriminate between the two. Additionally,
visual inspection shows similar spectral energy of tremor
and local earthquakes in the 10 to 15 Hz band. We initially
tried using a feature in the 15–50 Hz band in an attempt
to differentiate local earthquakes from tremor. The spec-
tral amplitudes in the 15–50 Hz band also did not differ
significantly enough to cluster local earthquakes into sepa-
rate groups. We therefore use an additional postprocessing
step to distinguish the small local earthquakes from tremor
event in the S1 class (section 3.4.1). We describe an esti-
mation of what fraction of the signal grouped into the S1
class is composed of local earthquake signal in sections 4.2
and 4.2.5.

[34] Finally, we discard all detected time windows less
than 4 s in length and merge time windows separated by less
than 30 s in the S1 class. We compile the beginning and end
of the resulting time windows in our tremor catalog. Table 3
summarizes the criteria used to sort the SOM-detected time
windows into the three user-determined classes.

3.4. Postprocessing
[35] Following the SOM clustering and sorting into the

S1, S2, and N classes, the S1 class still contains a number
of false detections (noise and small local earthquakes). The
goal of the postprocessing step is to identify false detections
and nontremor seismic signals and move them into the N and
S2 classes respectively. The postprocessing step consists of
two parts: (1) The first part sorts the earthquakes remaining
in the S1 class into the S2 class, and (2) the second part sorts
noise (false detections) into the N class. We label the two
parts earthquake postprocessing and noise postprocessing,
respectively. The noise postprocessing step is optional and
may be implemented depending on the sensitivity set by the
user (adjustable via the Fmean and Fstd parameters discussed
in section 3.2.4).
3.4.1. Earthquake Postprocessing

[36] Because the amplitude/frequency characteristics of
small local earthquakes are not dissimilar enough to that
of tremor to be discriminating, some local earthquakes are
grouped into class S1. The earthquake postprocessing step

Table 3. Criteria Used for Grouping SOM Clusters Into the
Respective Classes

Class 0.5–1.5 Frequency
Class Description Mean PQabs Band

S1 Tremor, small local earthquakes > 0.5 < 0.6
S2 Earthquakes (large local, regional) > 0.5 > 0.6
N Noise < 0.5 -
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Table 4. Summary of Parameter Settings of the Method Discussed in Section 3

Parameter Setting

Data Reduction (Section 3.1)
Filter bandpass 2–8 Hz
Data decimation 0.2 sps
Cross-correlation time window length 520 s
Cross-correlation time window step 5 s
Cross-correlation max. lag interstation distance/3 km/s
Correlation coefficient threshold 0.15
Signal merging period 300 s

Noise Reduction (Section 3.2.1)
Fourier transform time window length 0.6 s
Fourier transform time window step 0.3 s
Smoothing factor ˛ 0.9
Minimum tracking time window length 420 s

Trace Alignment (Section 3.2.2)
Envelope smoothing 15 samples
Cross-correlation max. lag interstation distance/3 km/s

Feature Calculation (Section 3.2.3)
Data decimation 50 sps
Time window length for feature averaging 0.5 s

SOM Clustering Algorithm (Section 3.3)
Minimum number of clusters 8
Maximum number of clusters 20

Signal Class Determination (Section 3.3.1)
PQabs threshold 0.5
Amplitude threshold for the 0.5–1.5 Hz band 0.6
Minimum station number 3

EQ Postprocessing (Section 3.4.1)
STA-window length 0.5 s
LTA-window length 30 s
C2 6
C5 5.5
Minimum station number with detections 3
Time window length for connecting detections at different stations 6 s
Time window extension 30 s
PGV threshold 1400 nm/s

Noise Postprocessing (Section 3.4.2)
Cross-correlation value averaging 3 best stations
Mean cross-correlation value threshold 0.8

identifies earthquakes in class S1 and moves them into
class S2. We first apply a STA/LTA (short-term average /
long-term average) trigger to S1 class time windows that
are less than 30 s in length to identify impulsive earth-
quake arrivals. We use an STA/LTA trigger based on the
algorithm described by Allen [1982] with a STA-window
length of 0.5 seconds and a LTA-window length of 30
s. We set the weighting factor C2 from Allen [1982]
between the two terms of the characteristic function to 6
and the threshold constant C5 to 5.5. The two terms of the
characteristic function are sensitive to changes in ampli-
tude and frequency, respectively, while the C5 constant sets
the threshold for event declaration. We apply the algorithm
to the Z component and declare an earthquake when the
STA/LTA threshold is reached on at least three stations
within a 6 s time window.

[37] The second part of the earthquake postprocessing
compares the remaining time windows in the S1 class
to the Advance National Seismic System (ANSS) catalog
[Advanced National Seismic System, 2012]. The detection
algorithm presented here does not determine origin times
for the detected events; therefore, we compare the results by
calculating traveltimes from the earthquake epicenter to the
center of the KIT array. We estimate the time window in
which a cataloged event should occur by calculating upper
bound and lower bound traveltimes using a range of seismic

velocities between 4.4 and 6.6 km/s. We account for both
P and S wave velocities for cases where only the S wave
is detected. Additionally, we extend the time window of the
expected earthquake by 30 s for two purposes: to compen-
sate for uncertainties in the travel path and to account for the
range of arrival times for epicenters which are in close prox-
imity to the array. The range of 4.4 to 6.6 km/s was chosen
quasi-empirically (based on realistic values) to maximize
earthquake detection by increasing the tolerance for error in
the traveltime estimation without making the time windows
so large that we might have erroneously included coinci-
dental tremor events. We count an earthquake as detected
if it occurs within the calculated time window. We limit
our earthquake catalog to the area bounded within the lati-
tude and longitude ranges of 32ıN and 38ıN, and 123.3ıW
and 113.3ıW. Additionally, we consider only earthquakes
with a calculated peak ground velocity (PGV) > 1400 nm/s
at the station array. We calculate the PGV following van
der Elst and Brodsky [2010], using log10 PGV = –2.29 +
0.85M – 1.29 log10 r where M represents the magnitude and
r represents the hypocentral distance in km.

[38] We assume the ANSS catalog is complete for larger
earthquakes. We also apply the STA/LTA detection algo-
rithm to time windows of less than 30 s in length to identify
small events missing from the catalog. If no catalog infor-
mation is available, one could apply the STA/LTA trigger to
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Data Reduction

Data preparation

SOM clustering algorithm

Post Processing

class N class S2 class S1

Figure 6. Flow chart of the method: neglected data within
the reduction step in section 3.1 are sorted into the noise
class N, and potential signals are kept and prepared in
section 3.2. Data preparation entails noise reduction, trace
alignment, and feature calculation and normalization. Pre-
pared data then gets classified into the three classes within
the SOM clustering algorithm in section 3.3. Afterward, the
optional postprocessing step in section 3.4 sorts misclas-
sified tremor to the earthquake and noise classes using an
STA/LTA trigger and envelope cross-correlation.

all time windows. The STA/LTA detection alone decreases
the correctly classified tremor by approximately 10%, while
also increasing the number of earthquakes in the S1 class by
approximately 10%. We provide a quantitative assessment
of the detection algorithm performance using the earthquake
postprocessing step in section 4.2.5.
3.4.2. Noise Postprocessing

[39] The noise postprocessing step moves noise events
falsely classified into classes S1 or S2 into class N. The
false classification of noise events results from the sensitiv-
ity of the algorithm, which can be adjusted via the Fmean
and Fstd parameters discussed in section 3.2.4. There is an

inherent trade-off between accuracy and sensitivity in the
detection algorithm; however, higher sensitivity enables the
detection of more lower amplitude tremor events. For cases
where a high sensitivity is desired, the optional noise post-
processing step detects and removes the majority of false
picks, increasing the detection accuracy. The basis for the
noise postprocessing step is the assumption that events have
a similar shape at different stations, while uncorrelated noise
bursts do not. Thus, the noise postprocessing consists of the
following steps: (1) calculating a smoothed envelope for all
traces in the time windows selected by the SOM, (2) cross-
correlating the envelopes and calculating a mean coefficient
of the three best cross-correlation coefficients, and (3) dis-
carding time windows with an average coefficient below
0.8. We implement additional steps to determine the time
window for which the envelope correlation is calculated to
account for possible misalignment of traces. Given that the
noise postprocessing step is optional, the details are included
in Appendix B.

[40] All parameter values described in section 3 are sum-
marized in Table 4, and Figure 6 provides a flow chart of
the method.

4. Results
[41] In this section, we evaluate the performance of the

tremor detection algorithm using test data set referenced
in section 3 to determine the best parameter settings. We
first discuss two examples of detected waveforms in order
to illustrate the capabilities and limitations of the method
(section 4.1) and present tremor and earthquake detec-
tion statistics, including correct, false, and missed detec-
tions (section 4.2). Additionally, to evaluate the method’s
effectiveness, we compare the performance of our method
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Figure 7. Example of a tremor episode exhibiting a good signal-to-noise ratio. Detected tremor is shown
in green, and noise is shown in white.
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Figure 8. Example tremor waveforms with low signal-to-noise ratio. The figure illustrates the perfor-
mance of the SOM clustering algorithm at the SNR detection threshold. Due to local noise conditions,
tremor is often only visible on a subset of stations. Data is filtered between 2 and 8 Hz. Color code
indicates the clustering result following the postprocessing step: detected tremor (green), noise (white),
and tremor detected by the SOM and rejected by the noise postprocessing step (red). The color-coded
clustering result is shifted in time at different stations illustrating the trace alignment determined by the
algorithm. The unusual moveout for KIT A1, A2, and A3 shows the failing of the trace alignment step,
although the method still detects the tremor. A probable event at 570 s is not detected, likely due to
erroneous moveout correction within the trace alignment step.

an implementation of Wech and Creager [2008] method
(section 4.2.2).

4.1. Tremor Waveforms
[42] Although tremor waveforms share characteristics,

such as a long-duration (seconds to tens of minutes) and a
lack of distinct phase arrivals, individual tremor episodes
vary greatly in their appearance (e.g., duration, number of
high amplitude pulses or tremor bursts, maximum ampli-
tude, etc.). In this section, we show two examples of detected
tremor waveforms to illustrate the capabilities and limita-
tions of the method.

[43] Figure 7 shows an example waveform from 3 July
2010, filtered between 2 and 8 Hz. The tremor episode
between 750 and 980 s has a median signal-to-noise ratio
(SNR) of �3 based on root-mean-square (RMS) value in
contrast to the much lower amplitude tremor around 180 s
(SNR of �1.5). The SOM method does not provide esti-
mates of source location; however, the detection method of
Wech and Creager [2008] provides an estimate of tremor
locations. For the episode shown in Figure 7, the aver-
age epicentral location is 35.64ıN ˙ 0.30ıN, 120.59ıW ˙
1.07ıW, with a depth of 19.16 ˙ 13.54 km. The epicentral
location is outside the boundary of Figure 1 and is therefore
not shown.

[44] Given our emphasis on greater detection sensitivity
(i.e., a higher number of detections) in our current algo-
rithm settings, we also obtain a number of false detections.

The tremor signal shown in Figure 8 has a low SNR of
�1.8 and is difficult to recognize even by visual inspection.
Figure 8 illustrates the performance of the method near the
detection threshold. Both Figures 7 and 8 show waveforms
where the detected tremor bursts are not obvious on all sta-
tions, often due to local noise; we show all traces to illustrate
the performance of the method even if noisy data are present.
The postprocessing step (correctly) rejects the first time win-
dow originally identified as a tremor event, while retaining
the remaining tremor windows. Furthermore, the algorithm
misses a probable tremor event around 570 s, likely due to
misaligned traces. Figures 7 and 8 show time-shifted traces
to illustrate the trace alignment determined by the algo-
rithm. Misaligned traces could occur at a station with a low
SNR or where multiple events occur in short succession.
Either case would lead to different moveouts within the same
time window.

4.2. Performance Evaluation
4.2.1. Comparison to Manually Detected Events

[45] Using the feature and normalization parameters out-
lined in the methods section, we compare the detected event
time windows to manually pick events in a 3 week test
data set from the beginning of the deployment, 24 May to
14 June. The manual picking, thus the manual detection
and classification of earthquakes and tremor, was performed
by careful inspection of the raw and filtered waveforms.
A correct detection is defined when a time window picked
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Figure 9. Detection performance for the test data set.
Tremor events shown in red, earthquakes in yellow, and
noise in brown. Cluster composition of S1 class, S2 class,
and rejected events within the noise class. Class S1 contains
101 tremor events, 5 earthquakes, and 21 noise windows
resulting in a detection accuracy of 79.5%. Class S2 con-
tains 17 tremor events, 174 earthquakes, and 2 noise events.
Class N contains 59 tremor events, 10 earthquakes, and 70
noise time windows. Of the 174 earthquakes (class S2),
48 have been identified and moved from class S1 using
the ANSS catalog and 105 with the STA/LTA algorithm
(hatched area).

by the algorithm overlaps with a manually picked event.
In some cases, the semiautomated method defines an event
time window that is visibly shorter than the duration of
a tremor episode. Detected time windows separated by
more than 30 s are considered as individual events. While
events separated by less than 30 s are grouped into a
single event.

[46] Figure 9 shows the composition of classes S1, S2,
and N. The events shown in class N consist only of those
events which were moved from class S1 following the noise
postprocessing step; the events classified originally as noise
by the SOM are not included. In total, the SOM and postpro-
cessing steps correctly detect 101 tremor events and obtains
26 false detections (5 earthquakes and 21 noise events) in
class S1, equivalent to a detection accuracy of 79.5%. Class
S2 consists of 174 earthquakes, 17 tremor, and 2 noise
events, corresponding to a 90.2 % detection accuracy. Dur-
ing the earthquake postprocessing, the STA/LTA algorithm
moves 105 earthquakes and 8 tremor events from class S1
into class S2. The comparison with the ANSS catalog shifts
48 earthquakes from class S1 to class S2, as well as 9
tremor events.

[47] Figure 10 plots the detected event date versus event
length for the 3 week long test data set. Roughly two thirds
of the detected events in classes S1 and S2 are shorter than 1
min. The longest tremor signal has a duration of 13 min, but
we note that the method often divides tremor episodes into
separate events. Seventy time windows rejected by the post-
processing step are removed correctly while 69 manually
picked events (i.e., correctly detected events) are removed.
Of the 139 rejected time windows, 101 windows are shorter
than 30 s (Figure 10b). The noise postprocessing step rejects
events mostly due to alignment failure (section 3.2.2), high
noise conditions, and/or detection of a small fraction of
a signal.

4.2.2. Comparison to Wech and Creager [2008] Method
[48] We compare the SOM method results for the 3

week long test data set with another commonly imple-
mented detection algorithm developed by Wech and Creager
[2008], referred to here as WECC. We implement the WECC
method as it has been successfully applied for tremor detec-
tion in Cascadia and is most comparable to our method as
it detects more extended coherent tremor episodes rather
than single LFEs. The WECC method calculates the cross
correlation of the envelopes of all station pairs within a 5
min time window. Next, the method performs a grid search
over all potential source locations, searching for the S wave
lag times in order optimize the cross correlation. There are
a number of adjustable parameters in the WECC method,
namely, cross-correlation window length, cross-correlation
value threshold, and minimum number of stations for loca-
tion. We tested different parameter settings finding that a
time-window length of 300 s with a 150 s time step worked
best for our data set. We only use observations with a maxi-
mum cross-correlation coefficient exceeding 0.5 and require
a detection on a minimum of five stations.

[49] One shortcoming of the WECC method is that it
detects earthquakes and other coherent signals without any
means of distinguishing such signals from tremor. There-
fore, it is necessary to implement a postprocessing step as
well. Similar strategies to those used with the SOM may be
adopted for distinguishing earthquakes and tremor identified
by the WECC algorithm: one option is to use a STA/LTA
trigger to exploit the distinct phase arrivals of an earthquake.
A second strategy is to use a remote station to distinguish
earthquakes from lower amplitude tremor. A third possibil-
ity is the use of an earthquake catalog. Here we use the same
strategy as the postprocessing step described in section 3.4.1
namely, and STA/LTA trigger paired with the comparison of
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Figure 10. Method performance on the test data set. (a)
Detected event time windows of class S1 plotted accord-
ing to date and detected event length. Marker type denotes
event type: tremor (circles), earthquakes (triangles), and
noise (squares). Of a total of 127 automatically detected
events, 101 are correctly detected tremor (green), and 26
are falsely detected (red) based on a comparison with man-
ually picked events. Detection accuracy is 79.5%, and the
sum of detected time windows is 141 min. (b) Events in
class S2 and (c) events moved from class S1 by the noise
postprocessing step.
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Table 5. Results of the WECC Method Applied to the Test Data Seta

Manual Classification

Method Number of Detections Tremor EQ Noise Detection Accuracy

WECC 245 54 160 31 22%
WECC with STA/LTA 81 34 38 9 42%
SOM S1 class 127 101 5 21 79.5%

aThe results of the SOM method from section 4.2 are displayed in the last line for comparison.

an earthquake catalog. However, we now set the C5 constant
from Allen [1982] to a value of 1.5.

[50] We applied the WECC method to the test data set
with and without the optional STA/LTA trigger. The method
without the STA/LTA detects 245 events and only 54 are
tremor according to our analyst picks. Of the 245 events, 160
are local and regional earthquakes, and 31 events are noise
(see Table 5). The STA/LTA reduces the detected events
to 81, 34 of which are tremor events, 38 earthquakes, and
9 noise events, leaving a detection accuracy of 44%. In
comparison, the SOM method detects 101 tremor events in
the same time period. Changing the parameter settings for
the WECC method to adjust for higher detection sensitiv-
ity leads not only to an increase in detected tremor events
(approximately 80) but also to an exponential increase in
false detections (over 500).

[51] A direct comparison of the algorithms is difficult
given that the SOM may detect multiple tremor events (i.e.,
multiple time windows) within the 5 min time window used
by the WECC method. Therefore, we compare each detected
tremor event by the WECC method directly with the detec-
tion result of the SOM method. Of the 34 tremor events
detected by WECC, 25 were detected by the SOM method
and correctly classified in class S1, 3 tremor events were
misclassified as earthquakes by the SOM, 4 were thrown out
by the SOM postevaluation step, and 2 were not detected
(see Table 6). However, the SOM identifies an additional 76
tremor events that were not identified by WECC. Thus, 101
tremor events were correctly identified by SOM compared
to just 34 identified by WECC.

[52] A reason for the discrepancy may be the limita-
tion that the WECC method requires spatial and tempo-
ral clustering. The advantage of the WECC method is its
ability to locate and detect tremor at the same time and
its computational efficiency. However, the SOM method
detects more tremor events with a higher accuracy since it
uses characteristics of the waveforms to classify different
event types.
4.2.3. Influence of Noise

[53] Furthermore, we determine the influence of signal to
noise ratio on the detection accuracy. Using the test data
set with manually detected events, we define a detection

completeness by dividing the number of automatically and
correctly detected events by the total number of manually
detected events, regardless of the difference in time win-
dow length. We calculate the detection completeness for bins
of events with a similar SNR. The SNR is calculated by
dividing the RMS amplitude of an event time window by the
RMS amplitude of a noise window. The SNR is computed
at each station on the vertical (Z) component. The individual
noise window is manually selected. As the detection requires
a minimum of three stations, we assign the third highest SNR
of all stations to an individual event.

[54] Figure 11a shows the detection completeness versus
the SNR. We differentiate between results with and without
the noise postprocessing step. Note that the detection accu-
racy is lower if the noise postprocessing step is not imple-
mented. However, evaluating the detection completeness of
the method with and without the noise postprocessing step
is instructive, as it allows us to understand how the noise
postprocessing step influences detection accuracy.

[55] Figure 11c indicates that for tremor, the method pro-
vides a detection completeness of 96% for events with a
SNR above 3. The detection completeness is approximately
80% for signals with a SNR value of 2 or higher. However,
it is important to note that the majority of tremors have a
signal to noise ratio less than 2. We also find that the noise
postprocessing step may reduce the detection completeness
in some cases. For example, events missed by the detec-
tion algorithm with a SNR � 3 are explained by failure
of the noise postprocessing step. The noise level similarly
influences the detection completeness for earthquakes. The
influence of noise is minimal with a SNR > 3, although a
small number of undetected earthquakes with SNR > 3 result
from poor trace alignment. The majority of earthquakes have
a SNR above 4.5 and are concentrated in the last bin.
4.2.4. Influence of the Number of Stations

[56] We also determine the influence of the number of
available stations used. In order to assess how the num-
ber of stations affects the detection accuracy as well as the
total number and duration of detections, we employ a jack-
knife test. We run the detection algorithm using data from a
set number of 3 to 15 stations. For a given number of sta-
tions, we use a random subset of the stations and repeat the

Table 6. Tremor Detected by the WECC Method Compared to SOM Detection Methoda

SOM Classification

Class S1 Class S2 Postevaluation Detected Events Missed by the SOM

WECC 34 4 10 6
WECC with STA/LTA 25 3 4 2

aNumber of tremor events correctly detected (class S1), detected events incorrectly classified as earthquakes
(class S2), events discarded by the postevaluation step (postevaluation), and correctly detected events missed
by the SOM (missed by the SOM).
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Figure 11. Mean detection accuracy of events for a given signal-to-noise ratio (SNR) (dots). Squares
indicate number of events within each SNR bin. Blue corresponds to results with the noise postprocessing
step included, and red corresponds to results before the noise postprocessing step is applied. (a) Detection
accuracy versus SNR for all events, (b) detection accuracy versus SNR for earthquakes, and (c) detection
accuracy versus SNR for tremor. Event classification is based on visual inspection. The y axis indi-
cates the detection accuracy in percent and the total number of events determined by manual detection.
Note that the results without the noise postprocessing step include more false picks, resulting in a lower
detection accuracy.

analysis up to 250 times. We then calculate the mean
and standard deviation values for each subset of stations
(Figure 12). Figure 12a shows the detection accuracy,
Figure 12b the number of correctly detected events, and
Figure 12c the total detected signal length versus number of
stations used. We perform the jackknife test for both classes
S1 and S2. The figure shows consistently higher accuracy
for class S2 (� 90%) while the accuracy for the tremor
class S1 increases from 50% for three stations to 80% for 15

stations. Using the minimum number of stations (3) results
in a detection of roughly one third of all events with a
high level of accuracy (90%) for class S2, but with a
poor level of accuracy for class S1 (50%). As the number
of stations is increased, the effects of noise at individual
stations are reduced, particularly when borehole stations
are considered.

[57] We also test the influence of individual stations on
the detection accuracy. We perform a jackknife test for each
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Figure 12. (a) Detection accuracy, (b) number of correctly detected events, and (c) detected signal length
versus the number of stations used. Crosses display the result for the S1 (tremor) class, and dots indicate
the results for the S2 (earthquake) class. Bars indicate the standard deviation within the averaged value.
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Figure 13. Comparison of mean performance values from
the jackknife test. (a) deviation from the mean detection
accuracy value for each (neglected) station, (b) deviation in
the number of correctly detected events, and (c) the deviation
in detected signal length. Asterisks designate borehole sta-
tions. Negative values (green) indicate improved accuracy
when a station is included.

omitted station, with each test consisting of 250 random
samples of (remaining) stations. We use the minimum num-
ber of occurrences for which any given station is included
(N) in the random sampling to calculate the average val-
ues for each station over N samples (instead of 250). The
jackknife test is performed in separate stages, in which a suc-
cessively larger number of stations are omitted. The effect of
omitting a specific station is shown in Figure 13. Figure 13a
displays the deviation from the mean detection accuracy.
Negative values indicate a decrease in the detection accuracy
when a given station is omitted, indicating the importance
of that particular station for the overall detection accuracy.
Positive values suggest that a given station is less important
for performance accuracy. An asterisk is used to denote the
borehole stations.

[58] Figure 13 suggests that the stacked mini-array sta-
tions KIT A2 and KIT A1 have a negative influence on
the detection accuracy while KIT 10 improves the accuracy
slightly. Including all three stations in each of the mini-
arrays decreases the number of correctly detected events and
the detected signal duration, likely due to noisy conditions
at the sites. Moreover, there is a clear difference between
surface and borehole stations. Not surprisingly, the bore-
hole stations perform better than the surface stations. The
test indicates that the most valuable surface stations during
the test data set period are KIT11 and PKD and the most
valuable borehole stations are FROB and VARB.
4.2.5. Comparison With the ANSS Earthquake Catalog

[59] In order to test the sensitivity of the detection algo-
rithm to seismic signals in general (i.e., classes S1 and S2),
we compare the detection results with the ANSS earthquake
catalog as described in section 3.4.1.

[60] Crosschecking the events found by manual inspec-
tion with the events detected by the SOM indicates that
the SOM finds a total of 179 earthquakes within classes S1

and S2 (Figure 9). A comparison with the ANSS catalog
indicates that 135 of those events were cataloged and that
9 tremor events were falsely classified as earthquakes. The
remaining 44 events are not cataloged. Figure 14a shows the
proportion of earthquakes from the ANSS catalog detected
by the SOM. Figure 14b shows the ability of the method to
detect almost every earthquake above a certain magnitude-
distance threshold. Most of the earthquakes that occur
within 150 km are classified correctly as earthquakes by
the STA/LTA algorithm within the earthquake postprocess-
ing step. Most of the earthquakes incorrectly identified as
class S1 that occur at distances between 150 and 350 km
are moved to class S2 by the earthquake catalog comparison
described in section 3.4.1. Note that some small earthquakes
occurring at large distances are falsely marked as detected
because they occur within the window of a detected tremor
event. We therefore apply the earthquake catalog compar-
ison in the earthquake postprocessing only to earthquakes
with a PGV > 1400 nm/s (indicated by the solid red line in
Figure 14b). Figure 14b suggests that small earthquakes not
in the ANSS catalog that occur close to the stations are often
discarded during the noise postprocessing step.

4.3. Analysis of the 14 Month Data Set
[61] After quantitatively assessing the detection algorithm

performance using the 3 week long test data set, we apply the
method to the entire 14 month data set collected between 24
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Figure 14. Earthquake detection results compared to the
ANSS earthquake catalog. (a) All earthquakes occurring
within our test data period as circles. Circle size corresponds
to catalog magnitude. Earthquakes detected and classified in
the S1 class are shown in green, detected earthquakes clas-
sified in S2 are shown in blue, detected events rejected by
postprocessing are shown in yellow, and undetected events
are shown in pink. (b) Earthquake magnitude versus dis-
tance; the color code corresponds to Figure 14a. Distance is
from the center of the KIT array. Red solid line displays the
PGV threshold of 1400 nm/s.
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Figure 15. Detection results for the complete data set: (a) detected tremor events per day, (b) minutes
of detected signal per day, and (c) cumulative signal duration (black curve). Figure 15c also shows the
number of station used each day (gray curve).

May 2010 and 30 June 2011, using parameters established
during calibration of the method. The parameter values are
given in section 3 and Appendix A.

[62] The results for the complete data set are plotted in
Figure 15. During the 13 month long study period, the SOM
detects some tremor almost every day. We find over 2606
tremor detections occurring in windows totaling over 55
h, with an estimated detection accuracy of 80%. As men-
tioned in section 4.1, the method tends to split low amplitude
tremor episodes into several individual bursts; thus, multi-
ple detected time windows could be affiliated with a single
extended event. The estimated number of events per day,
ranging between 0 and 61, reflect high amplitude tremor
arrivals or “bursts” that may occur within longer-duration,
low-amplitude episodes. The gap in late December coin-
cides with a drop in the number of stations used, which
is due to station outages. However, generally we do not
see a correlation between the number of stations used and
the number of detections. The nearly linear increase in
cumulative signal duration shown in Figure 15c suggests a
constant rate of seismic activity as well as a stable detec-
tion sensitivity over the study period. There is an average
of 6.5 events with a cumulative signal duration of 8.2 min
per day. There are days when the number of detections
are much higher than average, for example, in the begin-
ning of September 2010 and at the end of January 2011.
To identify teleseismic or regional wave arrivals at the
array, we estimate the peak ground velocity (PGV). We
find no evidence suggesting increase in detections is cor-
related with the occurrence of large earthquakes (i.e., with
high PGV). Moreover, visual inspection does not suggest an
increase in false detections for days with a higher than aver-
age number of detections. Thus, the step increases in the
cumulative signal duration likely reflect the true behavior
of ambient tremor. Similar observations of episodic tremor
episodes in the area are previously described by Nadeau

and Dolenc [2005], Nadeau and Guilhem [2009], and
Shelly [2010].

5. Conclusions
[63] We present a new method for tremor detection

based on a neural network approach. The method identifies
and distinguishes tremor, earthquakes, and noise based on
frequency content and horizontal to vertical component
products. We initially use a waveform envelope cross cor-
relation to reduce the data volume. The method does not
rely on a priori information such as event templates and is
capable of identifying tremor bursts of variable duration,
assuming some variation in tremor amplitude within the
length of the noise window (420 s). Moreover, the sensitiv-
ity of the method can be adjusted by a set of normalization
factors, Fmean and Fstd.

[64] The method detects 2606 events within the continu-
ously recorded data set from May 2010 to July 2011. The
tremor detection accuracy is nearly 80% for the SOM and
postprocessing steps, estimated by comparison to manual
picks in a 3 week long test data set. We expect similar detec-
tion accuracy for the entire study period. A comparison of
the earthquake detections with the ANSS catalog shows a
detection accuracy of approximately 90%. The event detec-
tion is based on a minimum of three stations. However, opti-
mum detection requires approximately 10 stations for our
particular network configuration. And the overall best per-
formance is achieved when four key stations (KIT11, PKD,
FROB, and VARB) are included in the analysis. One limita-
tion of the method is that it generally detects only a portion
of the tremor episode, typically identifying high-amplitude
portions of a longer, low-amplitude tremor episode.

[65] The method is in general very flexible and could be
adjusted by supplementing further features and/or by chang-
ing the detection sensitivity. Although we tested a variety of
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Figure A1. Normalization factor values for PQabs feature. The color coding corresponds to the Fstd
values shown in the legend.

features to discriminate tremor from noise in our data set,
the features determined to be most discriminating may differ
for other data sets. The fundamental advance of the method
is that it does not rely on master templates and is not based
on any assumptions about a minimum signal length. Remov-
ing such restrictions permits the detection of a wider range
of event types than present methods, thereby increasing the
potential for discovering tremor at different depths within
the fault zone.

[66] The method does not provide locations for the
detected tremor; however, the method could be useful to
restrict the time period for a LFE search with a template-
matching method. Other methods to locate tremor such as
envelope triangulation could also be applied to the detected
tremor periods. A follow-up paper is in preparation that
describes tremor location with a time reversal approach.

Appendix A: Normalization Factor Determination
[67] In section 3.2.4 we introduce the extended softmax

normalization, where we briefly discuss the possibility of
shifting the range of linear normalization to the optimal posi-
tion in the feature data set for discriminating between noise
and different seismic signals. One can change the range of
linear normalization by changing the Fmean and Fstd factors.
Here we discuss determining the Fmean and Fstd values in
greater detail. The optimal F-values are not known a priori,
because the range of feature values is not known a priori,
requiring manual determination.

[68] As mentioned in section 3.2.4, we use a test data set
containing 3 weeks of seismograms with multiple tremor
episodes, in order to determine the optimal F-values. We
start by comparing manually picked time windows with
SOM-picked time windows to determine a measure of the
detection accuracy. We repeat the process and detection
accuracy estimation, each time changing the F-value pairs,
while performing a grid search of the best F-values for an

individual feature. The values corresponding to the highest
accuracy empirically determine the values for Fmean and Fstd.

[69] We face a trade-off between detection accuracy and
sensitivity. Figure A1 shows the SOM performance for
various Fmean and Fstd values for the PQabs feature value nor-
malization. By choosing a lower Fmean value, the number of
correctly detected signals increases, as does the number of
incorrectly detected signals. As a result, the detection accu-
racy is lower than for higher Fmean values. The grid search
depicted in Figure A1 shows that values of Fmean = 1.8 and
Fmean = 0.6 provide an optimal balance between sensitiv-
ity and accuracy. Table 2 summarizes the values for other
features. Table A1 shows the calculated mean and standard
deviation values used in the extended softmax normalization
in equation (5) for each station and feature.

Table A1. Fmean and Fstd Values Used in the Extended Softmax
Normalization for Each Feature and Station (in Equation (5))a

Feature 2–8 Hz 15–30 Hz 0.5–1.5 Hz PQabs

Value Fmean Fstd Fmean Fstd Fmean Fstd Fmean Fstd

KIT A1 3.17 17.08 4.69 27.08 5.44 7.39 9.85 7.27
KIT A2 5.68 21.88 2.47 20.03 11.08 29.03 10.93 7.80
KIT A3 2.98 9.57 6.66 18.05 2.59 7.66 9.42 7.56
KIT10 1.90 6.70 1.62 3.98 6.70 6.06 9.29 6.10
KIT11 1.47 4.83 0.53 1.09 2.72 2.69 7.14 5.73
KIT12 0.78 1.53 10.46 24.99 1.31 1.39 6.76 6.12
KIT13 2.84 12.51 4.12 12.06 6.81 7.01 9.54 6.83
GHIB 7.08 19.49 1.13 2.65 4.47 4.70 12.22 7.99
EADB 3.21 8.75 1.14 2.41 3.62 3.15 10.95 7.53
FROB 3.54 15.55 1.57 7.57 3.87 3.90 9.97 7.52
MMNB 2.26 10.35 0.97 2.77 5.18 4.94 8.94 6.87
JCSB 1.82 8.66 1.05 3.55 0.53 0.50 8.24 5.26
VCAB 8.33 31.35 5.74 25.71 5.46 5.17 13.45 9.42
VARB 1.30 6.23 1.07 2.05 0.53 0.88 6.88 5.42
PKD 0.73 3.29 0.26 0.69 3.72 3.28 4.02 4.73

aKIT A1, A2, and A3 represent the mini-arrays for stations KIT01–
KIT09.
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Appendix B: Noise Postprocessing
[70] In section 3.4 we introduce a noise postprocessing

step applied to time windows detected by the SOM. The
basis of the noise postprocessing step is the assumption that
event waveforms exhibit coherency across stations, whereas
noise bursts do not. Thus, we test every detected time win-
dow for plausibility with a cross correlation of waveform
envelopes between stations.

[71] First, we extend the detected time window by two
percent of the time window length at the beginning and end.
To account for short time windows, we also add 3 s at the
beginning and end of each signal. The extension is necessary
as sometimes the detected time windows are only fraction of
an extended tremor signal.

[72] Second, we calculate the envelopes within the
extended time windows for each Z component trace and
smooth the envelopes with a window of 0.6% of the time
window length.

[73] Third, we calculate the cross-correlation coefficient
between all combinations of envelopes, using each station
once as a master station. We permit a 4 s time lag between
the envelopes in the cross correlation. The 4 s time lag
is meant to account for cases where alignment between
traces is incorrect. An example of where signal misalign-
ment could occur is at a noisy station or where multiple
events in short succession are recorded at various source-
station geometries. The alignment described in section 3.2.2
is then sensitive to the bigger event with the higher ampli-
tudes leading to a larger moveout for other events contained
within the same window.

[74] After calculating the cross-correlation values, we
average the three highest cross-correlation coefficients for
each master station and select the highest average cross-
correlation coefficient for each detected time window.
Whether or not the noise postprocessing step accepts or
rejects an event is based only on three station values, i.e.,
the minimum number of stations required for event detec-
tion. Finally, we neglect time windows with an average
cross-correlation value below 0.8.

Appendix C: Additional Events Detected
by the SOM

[75] In addition to the two tremor waveform examples
shown in section 4.1, here we show two additional exam-
ples of detected tremor, as well as a detected earthquake
(Figure C1), and an infrasound event (Figure C2). The first
to fifth panels in Figure C1 show the waveform data, fil-
tered between 2 and 8 Hz for selected stations. The sixth
panel documents the normalized values for the PQabs fea-
ture and the lower frequency value between 0.5 and 1.5
Hz. During the seismic events, the PQabs feature values are
increased, while the lower frequency band values are only
increased during the earthquake. The difference in the nor-
malized amplitude in the lower frequency band is used by
the SOM to distinguish between tremor and earthquakes,
although, in this particular example the earthquake was clas-
sified by the STA/LTA trigger in the postprocessing step.
Figure C2 shows an example of an infrasound event. The
twelfth panel documents the increase of the PQabs feature
values during the infrasound wave train, which leads the
SOM to misclassify infrasound events as tremor.
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